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H I G H L I G H T S

� Optimization of the battery size of PHEVs and EREVs under German market conditions.
� Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed).
� Optimal battery size strongly depends on the driving profile and energy prices.
� OEMs require a modular design for their batteries to meet individual requirements.
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a b s t r a c t

There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles.
To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle
(EREV) are promising powertrain technologies. However, the battery is still a very critical component
due to the high production cost and heavy weight. This paper introduces a holistic approach for the
optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment
focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the
optimal battery setup from total cost of ownership (TCO) perspective.

The results show that the battery size has a significant effect on the TCO. For an average German
driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by
2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal
battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost.
Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting
the storage capacity to meet the individual customer requirements instead of “one size fits all”.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The reduction of greenhouse gas emissions (GHG) and petro-
leum consumption is the major challenge for the transport sector in
the 21th century. Transport is responsible for about 20% of total
GHG emissions in the EU in 2011 (EEA, 2013). The European
Commission aims to cut 60% of CO2 emissions by 2050 with regard
to the 1990 level (European Commission, 2011). In this context, the
manufacturers of light duty vehicles, which are responsible for 75%
of total transport GHG emissions (EC, 2012), are required to
decrease average CO2 emissions of new passenger cars to 95 g/km
by 2020. However, the new regulation includes a phase-in period,
which allows OEMs to meet this target with only 95% of their car

fleet in 2020. Starting in 2021, 100% of the relevant fleet has to fulfill
95 g/km limit. Even more ambitious regulations (68–78 g/km) are
currently discussed for the following period 2020–2025 (European
Parliament, 2013). Achieving these targets will not be feasible with
conventional internal combustion engines. One of the most promis-
ing powertrain technologies are plug-in hybrid electric vehicle
(PHEV) and extended range electric vehicles (EREV) (Shiau et al.,
2009, Peterson et al., 2011, Özdemir and Hartmann, 2012,
Bandivadekar et al., 2008). They combine local emission free driving
of battery electric vehicles with the unrestricted driving range of
conventional cars powered by gasoline or diesel (Peterson,
Michalek, 2013). However, the battery is still a very critical compo-
nent due to the high production cost and heavy weight (Shiau et al.,
2009, Özdemir and Hartmann, 2012, Bandivadekar et al., 2008,
Peterson, Michalek, 2013, Shiau et al., 2010, Shiau, 2011). Therefore,
the right sizing of the battery is the key for electric powertrains to
meet customer expectations and become cost competitive against
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conventional technologies. There are several recent studies that
focus on the optimal battery size for grid connected hybrid electric
vehicle for the US market (Shiau et al., 2009, Peterson, Michalek,
2013, Shiau et al., 2010, Shiau, 2011, Wu et al., 2011), and for the
European market (Özdemir and Hartmann, 2012, Ernst et al., 2011,
Plötz et al., 2012).

Among the US studies, Shiau et al. (2009, 2010) compared
several PHEVs with different electric driving ranges with regard to
the economic and environmental feasibility for an average US
driver. In their analyses, best suitable battery size is determined
for different targets such as minimum net life cycle cost, and
minimum GHG emissions. The results show that the optimum
battery size is significantly lower for minimum cost target than for
minimum GHG emissions target for a specific driver type. Further-
more, Shiau and Michalek (2011) analyzed the effect of different
average daily driven distances. The results show that a switch from
conventional vehicle to a PHEV reduces the life cycle GHG
emissions significantly. Economic implications are not covered in
this work. Peterson and Michalek, (2013) investigated the net life
cycle air emissions from PHEVs for different battery sizes and
charging strategies for an average US driver. The results show that
emissions of CO2, SO2 and NOx can be reduced with increasing
battery size. Wu et al. (2011) analyzed the component sizing of
plug-in vehicles with the aim to optimize the powertrain costs
under different cycles. However, in this study only the production
costs of the powertrain are considered. The optimization did not
include running costs (such as gasoline or electricity from the
grid), which does not represent total cost of ownership (TCO).

Besides the studies for the US market, there are also studies
that concentrated on the European (especially German) market.
Özdemir and Hartmann (2012) analyzed the energy consumption
of PHEVs (for grid electricity and fuel), costs and GHG abatement
costs depending on the electric driving range for an average driver
under the assumed German market conditions in 2030. The results
show that the optimum electric driving range for minimum costs
and for minimum GHG abatement costs are between 12–32 km,
and between 16–23 km, respectively. Furthermore, they also
investigated the effect of changing oil price, annual mileage,
battery costs, energy consumption and interest rate. Main factors
that influence the results are identified as annual mileage and oil
price. Ernst et al. (2011) investigated similarly the economic
implications and CO2 emissions of PHEVs with different battery
sizes for an average German driver under the assumed market
conditions in 2020. The results show that PHEVs are cost compe-
titive, if the battery size is small (e.g. 4 kWh). Furthermore, the
recharging strategies are not found to be significant for the cost
calculation results. Plötz et al. (2012) focused on the analytical
solution of the TCO minimization problem for PHEV drivers with
respect to the battery size. The results show that the optimal
battery size is about 10 kWh (50 km electric driving range) for
battery costs of 200 EUR/kWh for the average German driver.

Although the impact of PHEV battery size on costs and GHG
emissions has already been studied in the literature in some detail,
existing studies neglect some significant aspects in this context.
Firstly, they do not account for the heterogeneity which can be
observed across different driver types. The papers discussed before
typically assume a constant driving distance (Shiau et al., 2009) or
a trip distribution based on an average driver (Özdemir and
Hartmann, 2012, Plötz et al., 2012, Ernst et al., 2011). However,
in reality, the daily driving distance varies significantly during one
year and across different user types (DLR &amp; Infas, 2010).
Secondly, previous studies do not consider that drivers with higher
annual mileage typically spend more time on motorways with a
higher average velocity than that by drivers with lower annual
mileage, which in consequence effects the energy consumption
and the share of electric driving of the PHEV. In this context,

Ernst et al. (2011) identifies different driving profiles for PHEVs as
a future research area. Thirdly, none of the existing studies
considered the technical differentiation between hybrid architec-
tures such as parallel (PHEV, plug-in hybrid electric vehicle) and
serial (EREV, extended range electric vehicle) powertrain config-
urations. Lastly, batteries are subject to degradation and aging
processes which require a substantial oversizing of the initial
energy capacity, which is not taken into account by some studies
(e.g. Plötz et al., 2012).

Therefore, this paper aims to close these gaps by introducing a
holistic approach for the optimization of the battery size of PHEVs
and EREVs under German market conditions by considering the
battery degradation and secondary effects of additional mass on
the energy consumption. The assessment puts special focus on the
heterogeneity across drivers, by analyzing the impact of different
driving profiles on the optimal battery setup from total cost of
ownership perspective for the year 2020 in Germany. Further-
more, specific CO2 emissions (tank to wheel – TTW and well to
wheel – WTW) for grid connected cars are analyzed as a function
of battery size. The most relevant data for this analysis, e.g. energy
consumption or battery costs, is based on own vehicle simulations
and detailed cost models.

In the following, Section 2 introduces the methodology to
identify a cost optimal design for the battery capacity of grid
connected vehicles. Section 3 describes the underlying total cost of
ownership model and the empirical data used to characterize the
driving behavior. The model is applied to the situation of different
driver types and the resulting implications on energy consump-
tion, mobility cost and GHG emissions are discussed (Section 4).
The sensitivity of the results with regard to changes in the
underlying input parameters is analyzed to understand the
dependences from external factors, e.g. energy prices. Finally,
Section 5 summarizes the policy implications and gives an outlook
on future research questions.

2. Methodology

The sizing of the battery has multiple implications on the
technical properties and the financials of hybrid electric cars (see
Fig. 1). The installed battery capacity directly affects the curb
weight and the energy consumption of the car, which in combina-
tion determine the all-electric driving range. Besides the technical
configuration of the powertrain, the share of electric driving is also
influenced by the driving behavior of the user. In general, a larger
battery capacity leads to a higher share of electric driving because
more trips can be covered within the electric driving range of the
car. As electric motors offer significantly better energy efficiency
than internal combustion engines (ICE) a higher share of electric
driving causes lower operating costs for the car holder and lower
CO2 emissions. On the other hand, the production cost of the
battery and the associated purchase price for the custumer
increase with rising energy storage capacity. Consequently, the
optimal battery size from the perspective of a car buyer is a
tradeoff between one time investment costs and running costs
over lifetime. To identify the minimal cost car configuration, the
TCO are used in the following to evaluate the overall cost
efficiency. Thus, the objective function of this optimization pro-
blem can be expressed as:

min TCO¼ f ðEBat ;YnðDnÞ; ZÞ ð1Þ
where EBat equals the total nominal battery capacity in kWh
(including the oversizing due to degradation). The variable Y
describes the individual driving behavior of the user n. The
distributions of the daily trip lengths as well as the average driving
speed are modeled as a function of the annual mileage Dn.
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Z summarizes the underlying scenario assumptions, which include
among others the energy prices for gasoline and electricity, as well
as production cost of Li-ion batteries and the assumed life time of
the car. The influence of these external factors and assumptions is
discussed in detail through a sensitivity analysis in Section 4. The
overall structure of the optimization problem is summarized in
Fig. 1.

For hybrid electric vehicles with external grid connection, two
typical operating strategies can be distinguished (Shiau et al.,
2009). In charge depleting mode (CD), the car is primarily
powered by electric energy from the grid. When the battery state
of charge (SOC) reaches a lower threshold (SOCmin), the hybrid
vehicle is operated in charge sustaining mode (CS). Here, the
combustion engine generates the energy required on board for
driving in order to keep the SOC nearly constant until the battery is
recharged again at an electric outlet (see Fig. 2). The effective
energy consumption per km eMix is, therefore, a combination of the
corresponding CD and CS consumptions (eCD, eCS):

eMix ¼ eCDwCDþeCSð1�wCDÞ ð2Þ
The share of driving in CD-mode (wCD) depends on the electric

range and the driving pattern of the individual user. To avoid
degradation of the battery due to deep discharge below the lower
SOC-limit SOCmin only the share (1�SOCmin) of the total capacity
EBat is regularly used for driving. Therefore, the distance dBat,
which is the distance the car is able to cover in CD-mode, is
determined by the usable energy content of the battery EBat until
the lower SOC limit is reached:

dBat ¼
EBatð1�SOCminÞ

eCD
ð3Þ

The driving pattern of a user can be described with a prob-
ability density function h(x) as shown in Fig. 3. Unlike previous
studies (Özdemir and Hartmann, 2012, Ernst et al., 2011, Plötz
et al., 2012) differentiated trip distributions are derived in the
following for varying user types n based on empirical data. The
distribution function specifies the composition of the annual
mileage D out of N single trips with daily driving distance s:

D¼N
Z
s
hnðsÞsds ð4Þ

Assuming on an average one charging per day (typically over-
night) the total distance DCD (covered in CD operating mode) for
the days, where the driving distance is lower than the dBat, can be
computed as:

DCD ¼N
Z dBat

s ¼ 0
hnðsÞsds ð5Þ

The corresponding number of trip NCD with a distance lower
than dBat kilometer is defined by:

NCD ¼N
Z dBat

s ¼ 0
hnðsÞds ð6Þ

The trips (N�NCD) with a daily driving distance s4dBat are
covered in mixed operating modes. In the first part of the journey,
the car is operated in CD-mode until the battery reaches its
minimum state of charge after dBat kilometers; the remaining
distance is completed by CS-mode (see Fig. 2). So, the average
share of CD-driving (wCD) in the course of one year can be
described by:

wCDðdBatÞ ¼
DCDþðN�NCDÞdBat

D
ð7Þ

3. Model and data

3.1. Vehicle setup and energy consumption

To analyze the energy consumption of the examined power-
train concepts, the DLR Modelica library AlternativeVehicles
(Hülsebusch et al., 2009) is used in this study. The simulation
software contains a large set of parameterized drivetrain compo-
nents (e.g. electric drives, transmissions, batteries) which allow to
model different powertrain architectures and simulate the
dynamic system behavior in various driving cycles.

This assessment focuses on two representative powertrain
concepts. The PHEV is designed as a parallel hybrid electric vehicle
which employs a torque-adding electric motor, flange-mounted to
a six-speed automatic gear and two clutches that allow decoupling
the combustion engine. The EREV represents a serial hybrid
architecture with a central electric motor and a single speed
transmission. The combustion engine serves as a range extender
module that generates energy in case of low battery state of
charge and has no direct connection with the wheels. Both EVs use
a Li-ion battery in high energy configuration as electrical energy
storage. For comparison reasons, a conventional car with ICE
(gasoline, spark ignition (SI) engine) is also included in the study.
The setup of the simulated vehicles corresponds to the average
configuration of a midsize passenger car based on an analysis of
the German auto market (ADAC, 2010). The basic technical para-
meters of the reference vehicles are summarized in Table 1. All
three cars in the assessment show a similar acceleration perfor-
mance (between 8 to 9.5 s to accelerate from 0 to 100 km/h).

Fig. 2. Battery state of charge in CD and CS-mode (illustrative according to Shiau
et al. (2009)).

Fig. 1. Structure of the battery size optimization problem for PHEV and EREV. (a) CD: Charge depleting; CS: Charge sustaining; (b) TTW: Tank to wheel; WTW: Well to wheel.
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However, due to the parallel hybrid architecture, the PHEV has
some performance advantages if both, combustion engine and
electric motor, are used in combination.

The New European Driving Cycle (NEDC) is applied as standar-
dized driving cycle to compare the energy efficiency of the
selected powertrain concepts. In addition, real-world fuel con-
sumption in urban and extra urban driving is assessed by taking
the average power demand for auxiliaries (as specified in Table 1)
into account. The simulation results of the reference vehicles
separated in CD and CS mode are presented in Table 2. The
combined NEDC values and CO2 emissions are calculated accord-
ing to the official EU Directive 70/220/EWG and UNECE Rule No.
101 (Rousseau et al., 2012).

In the following analysis, the battery capacity of PHEV and
EREV are considered as variable. A change of battery size also
affects the vehicle mass and subsequently the energy consump-
tion. According to the methodology applied in Redelbach et al.
(2012a), the adjusted vehicle weight is modeled as

m¼m0þ
ΔEBat
ρBat

ð1þφÞ ð8Þ

where, m0 denotes the mass of the reference vehicle and ρBat is the
gravimetric energy density of the battery pack. The structural
weight factor φ is assumed to be 0.5 for midsize passenger cars
in accordance with an analysis of Malen and Reddy (2007).
It describes the secondary mass effects for the required modifica-
tion in the vehicle body and chassis, if extra battery weight is
added (Shiau et al., 2009). To quantify the sensitivity of the energy
consumption regarding chances in vehicle mass, a set of parameter
variations has been performed and analyzed. Starting from the
reference configuration defined in Table 1, the total mass of the
examined vehicle concepts is changed in discrete steps of 100 kg
while all other parameters are kept constant. The observed effects
on the energy consumption of PHEV and EREV are plotted in Fig. 4.
The simulation results show a linear relationship that can be
described as follows:

e¼ e0þεmðm�m0Þ ð9Þ
with the mass influence factor εm ¼Δe=Δm. For simplification εm is
assumed to be identical in CD and CS model. For a detailed analysis
of the weight effects on energy consumption and related mobility
costs for different electrified powertrain concepts see Redelbach
et al. (2012a).

3.2. Total cost of ownership model

The applied TCOmodel covers all types of expenses accruing for
a vehicle owner (in EUR2010) including investment costs as well
as operating costs (e.g., fuel/energy, vehicle tax, general/exhaust
inspection, maintenance, and repair). The annual mileage, vehicle

holding period and use characteristics (i.e. share of electric
driving) are adjustable to facilitate the economic comparison for
different types of users as well as to perform sensitivity analyses.
Fig. 5 shows an overview of the general structure of the TCO
model. For a more detailed description of the model see Redelbach
et al. (2012b), Propfe et al. (2012b) and Redelbach et al. (2013).

In this study, a typical life time of 12 years is assumed for the
TCO calculation similar to Özdemir and Hartmann (2012). The
running costs over time are discounted with an internal interest
rate i of 5% p.a. Furthermore, it is assumed that the vehicle does
not have any residual value at the end of its lifetime. So the TCO
calculation (CTCO) can be described as net present value in an
aggregated form as:

CTCO ¼ CInvestþ ∑
12

t ¼ 1

ðCEnergy;tþCMaintanance;tþCOther;tÞ
ð1þ iÞt ð10Þ

Fig. 3. Frequency distribution of daily driving distance (for a driver with 15,000 km/year) and cumulated annual mileage in CD- and CS-mode (own analysis based on DLR &
Infas, 2010).

Table 1
Definition of technical parameters for the analyzed medium size passenger cars
with different powertrains (based on (ADAC, 2010, Wallentowitz, 2011, Braess,
2012, Mock et al., 2009)).

Parameter Unit ICE PHEV EREV
Vehicle architecture Gasoline SI-

engine, direct
ignition,
2-wheel drive
(identical for
all), 6-speed
automatic
transmission

Parallel hybrid
with 2 clutches,
6-speed
automatic
transmission
with torque-
adding electric
motor external
charge unit

Series hybrid
with gasoline
engine as
range
extender,
single speed
gear, external
charge unit

Power (combustion
engine)

kW 100 75 50

Power (electric
motor)

kW – 50 100

Traction battery
capacitya

kWh – 5 15

Driving range in CD-
modea

km – 48 77

Curb weight kg 1400 1510 1580
Frontal area m² 2.2
Drag coefficient – 0.28
Rolling resistance

coefficient
– 0.1

Average energy
consumption for
auxiliaries

W 700 900 1100

a The battery capacity and the corresponding electric range are variable in the
following analyses. The values in the table indicate the nominal battery capacity of
the reference vehicle.
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where CInvest is the purchase price of the vehicle, CEnergy is the annual
energy cost for fuel and grid electricity, CMaintanance is the annual
maintenance and costs for the vehicle owner,1 Cother is the sum of
vehicle tax (based on engine capacity and emissions) and expenses for
mandatory general and exhaust inspection in Germany, i is the
calculatory interest rate and t is the operation time in years.

To project the future development of the production cost for
the core components of the electric drivetrain (traction battery,
electric motor and power electronics) specialized models, which
have been developed at the DLR Institute of Vehicle Concepts, are
applied (Kroll, 2011, Braun, 2012, Propfe et al., 2012a). The battery

cost model allows estimating cell, module, and pack production
cost for the most important Li-ion chemistries as a function of the
production volume. In this assessment, lithium nickel manganese
cobalt oxide (NMC) has been selected as cathode material for the
high-energy storage with a learning rate of 86% (i.e. with a
doubling of output the average production cost decrease by 14%
due to economies of scales). The resulting costs in EUR2010/kWh
for production volumes of 10,000 and 100,000 packs per year are
plotted in Fig. 6 for varying battery capacities. The resulting
battery costs for a production plant with a capacity of 100,000
packs per year (which are assumed to be reached in 2020) are
about 330 EUR2010/kWh for 5 kWh battery pack and 270 EUR2010/
kWh for 15 kWh pack. This is in line with other cost projec-
tions given in the literature which estimate battery costs in the
range between 200 and 420 EUR/kW for the year 2020 (Özdemir
and Hartmann, 2012, Fraunhofer, 2013). The assumed production
cost of the other powertrain components are summarized in
Table 3. The rest of the car (e.g. body, chassis, interior, exterior)
is assumed to be identical for all analyzed vehicle concepts. To
estimate the investment cost of the car buyer an average margin of
35% (accounting for indirect costs and profit margin of the OEM
based on Mock (2010)) and VAT of 19% is added.

The annual energy costs for the vehicle owner (CEnergy) are
determined by the effective energy consumption (in blended
mode) and the corresponding market prices for electricity (pE)
and fuel (pF) in EUR2010/a:

CEnergy ¼DðeCDwCDpEþeCSð1�wCDÞpF Þ ð11Þ

where wCD indicates the share of electric driving in CD mode
(estimated according to Eq. (7) as a function of the driver's annual
mileage).

Table 2
Energy consumption of reference medium size passenger cars with different powertrains (based on simulation results with DLR AlternativeVehicles library).

ICEa PHEVb EREVb

Fuel (gasoline) consumption l/100 km l/100 km (CS/CD) l/100 km (CS/CD)

NEDC 6.8 3.0 1.1
Urban (real-world) 10.8 6.7 / 0.0 6.4 / 0.0
Extra urban (real-world) 7.0 5.6 / 4.1 5.8 / 0.0

Electricity consumption (from the grid) Wh/km (CD) Wh/km (CD)

NEDC – 30 91
Urban (real-world) – 157 162
Extra urban (real-world) – 33 152

CO2 emissions (in g/km, Tank-to-wheel, NEDC) 157 71 26

a Values in the table are for the reference year 2010. An average efficiency improvement of 2% per year is assumed for ICE fuel consumption between 2010 and 2020.
b Energy consumption of reference configuration, changes in vehicle mass (due to variations of battery size) effect energy consumption.

Fig. 4. Change of energy consumption relative to reference vehicle for PHEV and
EREV as a function of vehicle weight (Redelbach et al. 2012a).

Table 3
Assumed production cost in EUR2010 of midsize cars with different powertrains in Germany for the year 2020.

Production cost (in EUR2010) ICE PHEV EREV Source

Combustion engine (SI) 2720 2,040 1360 (CONCAWE et al., 2011)
Electric motor – 640 940 DLR cost model (Braun, 2012)
Power electronics (incl. charging unit) - 980 1370 DLR cost model (Braun, 2012)
Traction batterya – 1650 4050 DLR cost model (Kroll, 2011)
Other powertrain components (incl. transmissions, tank, etc.) 2730 2560 2300 Analysis based on (McKinsey & Company and RWTH Aachen, 2011)
Rest of the vehicle 11,280 Analysis based on (ADAC, 2010, KBA, 2011)
Total production cost of the vehicle 16,730 19,150 21,300

a Battery cost for the defined reference vehicle in Table 1 (battery size of 5 kWh in PHEV and 15 kWh in EREV) and an assumed plant capacity of 100,000 units/a. In the
following, the battery size and resulting costs are taken as a variable and will be optimized.

1 As maintenance costs are not expected to affect the optimal battery size, they
are not considered in the following analysis for simplicity reasons.
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For other external factors (e.g. gasoline and electricity prices),
which influence the TCO analysis, representative assumptions have
been made to reflect the situation in the German car market in
2020. An overview about the most relevant input parameters for
the optimization problem is provided in Table 4. In the sensitivity
analysis in Section 4, these assumptions are varied systematically.

3.3. Driving behavior

The mobility behavior within the population is extremely
diverse. While drivers with low annual mileage (e.g. 7500 km/a)
cover a distance of less than 20 km on 201 days in a year, which
corresponds to a share of 55% (201 d/365 d). This share is less than
30% (110 d/a) for frequent drivers (e.g. 30,000 km/a) (see Fig. 7).
To model the observed heterogeneity across users and the result-
ing effects on the battery optimization problem realistically,
typical driving patterns are derived based on empirical data. The
national travel survey Mobility in Germany (MiD) (DLR & Infas,
2010), which characterizes the detailed mobility behavior of more
than 50,000 German households in 2008, is used as primary data
source. For the following analysis, three representative cases are
selected: user B has an annual mileage of 15,000 km/a, which is
close to the German average. user C, as a frequent driver, travels
double of this distance (30,000 km/a) and user A only half of this
distance (7500 km/a). For all three drivers, a typical frequency
distribution of the daily driving distance h(s) is determined based

on MiD data and described mathematically with a log normal fit.
With h(s) and Eqs. (3)–(7) the share of driving in CD operating
mode can be evaluated as a function of the electric range.
As plotted in Fig. 8 wCD grows with degreasing gradient over dBat.
This analysis indicates that as the mileage gets higher, the
resulting CD-share will be lower. So, given an electric range of
40 km, user A would drive 68% of his travel distance in CD-mode,
user C only 51%.

In addition, the MiD data is also used to identify the average
driving speed of different user types. The empirical data shows a
relationship between the trip distance and mean speed (calculated
as the ratio of trip length and travel time). People who usually
travel longer distances tend to spend more time on motorways
with a higher average velocity than short distance drivers.
In addition, the place of residence also has a significant influence
on the driving speed as shown in Fig. 9. On short trips, people from
densely populated urban and metropolitan areas show a signifi-
cant lower driving speed than people from rural areas due to
frequent stop-and-go traffic within cities. With increasing trip
distance (425 km), the average driving speed of users with rural
and urban place of residence converge (see Fig. 9).

To take these differences in driving style into account, the mix
of urban (wurban) and extra-urban driving (wextra-urban) in the
model is adjusted in a way that the weighted average of the
driving speed in the simulated driving cycles (vurban, vextra-urban)
equals the statistically observed mean speed (vn,mean) of user n:

vmean;n ¼wurban;nvurbanþwextra�urban;nvextra�urban with

wurban;nþwextra�urban;n ¼ 1 ð12Þ

So the share of urban driving of user n can be estimated by:

wurban;n ¼
vextra�urban�vmean;n

vextra�urban�vurban
ð13Þ

In the following the average energy consumption of the vehicle
driven by user n is calculated by combining the simulated energy
consumption in urban and extra-urban drive cycles (Table 2) with
the determined individual weighting for user n:

ecombined;n ¼ eurbanwurban;nþeextra�urban;nð1�wurban;nÞ ð14Þ

For the three selected user types assessed in this study, this
method results in urban and extra urban driving shares of about
53% and 47% for user A, 40% and 60% for user B and 22% and 78%
for user C, respectively.

Fig. 5. General structure of the TCO model (Redelbach et al. 2012b).

Fig. 6. Production cost of high energy batteries as a function of production volume
and pack size.
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4. Results and discussion

In the following, the effect of the battery size on energy
consumption and TCO are analyzed and presented in detail for the
EREV case. The analysis for the PHEV follows the same methodology.
For PHEVs, only relevant differences will be highlighted in the text.

The average electricity consumption from the grid and the
average gasoline fuel consumption for different daily driving

distances are shown in Fig. 10 (left side) for an EREV driver with
an annual mileage of 15,000 km/a (user B). The average electricity
consumption, which is about 15 kWh/100 km for the CD-mode, is
constant, if the driving distance is shorter than the dBat. The
traction energy is provided mainly by an ICE in CS-mode, so the
average electricity consumption over the whole driving distance
decreases, where the average fuel consumption is increasing. The
resulting final energy consumption of the EREV (sum of electricity
and gasoline fuel) is shown in Fig. 10 (right side) as a function of
battery size for a user with an annual 15,000 km. As expected, the
average final energy consumption in MJ/100 km reduces as the
battery's driving range increases due to the fact that the electric
motor has a higher efficiency than the ICE. The increased battery
weight for longer battery driving range, which requires higher
traction energy, has been taken into account in this analysis. The
calculated energy consumption is ca. 90 MJ/100 km for a battery
driving range of 61 km, which corresponds to the range of
Chevrolet Volt-EREV. For this case, the share of consumption for
electricity from grid and fuel are calculated as 45% and 55%,
respectively.

The results for energy consumption of the PHEV (Fig. 11) are
significantly higher compared to the EREV especially for higher
battery sizes. The calculated energy consumption is ca. 135 MJ/
100 km for a battery size of 5 kWh, which corresponds to the
setup of Toyota Prius-PHEV. For this case, the share of consump-
tion for electricity from grid and fuel are calculated as 15% and
85%, respectively.

The combined energy cost for electricity and fuel (CEnergy) are
calculated according to Eq. (11) based on the energy consumption
and the assumed prices of the energy carriers (see Table 4). The
resulting costs from the TCO model are plotted in Fig. 12 as a
function of battery capacity for the three selected user types. The
analysis shows two different effects. First, the energy cost decrease
with growing battery size due to the higher share of electric driving

Fig. 7. Distribution of the daily driving distance for users with low and high annual
mileage (own analysis based on MiD data).

Fig. 8. Average annual CD-driving share (wCD) as a function of electric battery range
(dBat).

Fig. 9. Average driving speed in Germany as a function of average trip distance and
place of residence (own analysis based on MiD data, (Rousseau et al., 2012)).

Table 4
Parameters for baseline scenario in year 2020.

Input parameter Unit Value Source

Oil price USD2011/bbl 118 (IEA, 2011) Current policy scenario
Gasoline retail price EUR2010/l 1.62 Based on historical regression between oil and gasoline price (ADAC, 2013)
Electricity retail price EUR2010/kWh 0.27 Own calculation based on BMU (2012)
Life time / holding period a 12 Assumption based on (Özdemir and Hartmann, 2012)
Interest rate % 5 Assumption based on (Fraunhofer, 2013)
Battery production plant capacity Packs/a 100,000 Model assumption based on (NPE, 2011)
Battery energy density (pack) kWh/kg 0.1 (den Boer et al., 2013)
Minimum SOC % 20 (Özdemir and Hartmann, 2012, Fraunhofer ISI, 2013)
CO2 emissions gasoline (TTW) g/MJ 73.3 (CONCAWE et al., 2011)
CO2 emissions gasoline (WTT) g/MJ 7.4 (SULTAN, 2010)
CO2 emissions electricity (WTT) g/MJ 75.2 (BMU, 2012)

M. Redelbach et al. / Energy Policy 73 (2014) 158–168164



for all users. The gradient of the curve declines as the additional
savings get small for capacities over 15 kWh. Second, for a given
battery size the specific energy costs (in EURc2010/km) rise with the
mileage of the user. For example, with an EREV battery size of
10 kWh, energy costs are 4.5 EURc2010/km and 5.0 EURc2010/km for
annual mileages of 7500 km and 30,000 km, respectively. This effect
is caused by the observed differences in trip distribution and driving
speed (see Figs. 7 and 9). Frequent travelers have a higher share of
long distance trips and on an average drive faster, both of which
result in a lower share of driving in CD-mode. Nevertheless, user C
with 30,000 km per year profits most in absolute terms by installing
a larger battery size. Its annual energy costs are reduced by 250
EUR, when the driver chooses 10 kWh instead of 5 kWh battery.
In case of user A, the equivalent savings are only 60 EUR per year.

Although PHEVs have similar results, the energy costs are at a
slightly higher level. The energy costs for a battery size of 10 kWh

Fig. 10. Electricity and fuel consumption over driving distance for EREV (reference configuration with 15 kWh battery) left, and average combined energy consumption as
a function of battery size for user B (15,000 km/a) right.

Fig. 11. Electricity and fuel consumption over driving distance for PHEV (reference configuration with 5 kWh battery) left, and average combined energy consumption as
a function of battery size for user B (15,000 km/a) right.

Fig. 12. Energy (electricity and fuel) cost in EURc2010/km of EREV as a function of
battery size and annual mileage.
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are 5.1 EURc2010/km and 5.8 EURc2010/km for annual mileages of
7500 km and 30,000 km, respectively. Increased energy costs of
PHEVs compared to EREVs are due to the higher overall energy
consumption and higher share of CS-mode by PHEVs.

The total cost of ownership (TCO) is analyzed for the different
user types (see section 3.3) and shown in Fig. 13 depending on the
battery size for EREV. For drivers A, B and C, least costs are
achieved with the battery sizes of 2.0, 6.0 and 13.0 kWh, respec-
tively. These battery sizes correspond to 8, 24 and 51 km of
electrical range depending on the individual driving profiles of
the users A, B and C, respectively. The comparison of the minimum
TCO for the optimized battery size with the conventional ICE
vehicle shows that the EREV might be a cost saving technology for
all the driver types in the year 2020.

The TCO-curves are similar for the PHEVs with the exception
that the optimal battery sizes are smaller (1.5, 3.5 and 5.0 kWh in
case of user A, B and C). The reason for the difference is again the
higher share of CS-mode by PHEVs.

In a comprehensive sensitivity analysis the assumed values for
gasoline price, life time, energy density of the battery, interest rate,
battery cost and electricity price are varied and the resulting
change in the optimal battery size for EREV driver B (15,000 km/a)
is plotted in Fig. 14. It can be seen that among the varied
parameters gasoline prices have the highest impact on the results.
An increase in the gasoline prices by 30% causes a change in the
optimal battery capacity of more than þ50%. The optimal battery
size is also relavtively sensitive to variations of the electricity
prices and battery cost. If these input parameters increases by 30%
(ceteris paribus), the optimal battery capacity would be approx-
imatly 30% lower than determined before.

As gasoline and electricity prices are decisive for the optimal
battery size (see Fig. 14), a more detailed parameter variation is
performed for these parameters. The effect of increasing gasoline and
electricity prices about 25% is shown in Fig. 15 for PHEV (left side) and
EREV (right side) for different annual mileages. For example, the PHEV
driver C (with an annual mileage of 30,000 km/a) has the optimal
battery size of 5.0 kWh under assumed gasoline and electricity prices.
Increasing gasoline and electricity prices by 25% would result in an
optimal battery size of ca. 6.4 kWh (increase of 28%) and 4.2 kWh
(decrease of 16%), respectively. A similar trend can also be seen
by EREV.

A comparison of the results in the present study with the existing
literature shows that the optimum battery size (about 4 kWh in this
study) of PHEVs for an average German driver (driver B) matches

well with the results of Özdemir and Hartmann (2012) and Ernst
et al. (2011). On the other hand, the analytically derived battery size
determined by Plötz et al. (2012) seems to be significantly different
for an average driver in Germany (410 kWh). The situation for other
driver types (A and C) and EREV are not analyzed in the mentioned
literature. The results in the present study show that there are
significant differences for the optimal battery size for different
configurations (EREV vs. PHEV) and for different driving profiles
(A, B and C). For an average German driver (driver B), the optimal
battery size is 50% higher (6 kWh instead of 4 kWh) for the serial
hybrid architecture compared to the parallel powertrain design (see
Fig. 15). On the other hand, for a given configuration (e.g. EREV), the
optimal battery size differs significantly depending on the driving
profile. While driver A with low annual mileage (7500 km/a) should
choose a very small battery capacity of about 2 kWh, frequent driver
C (30,000 km/a) should decide for a considerably higher battery size
of about 13 kWh in order to minimize his total cost of ownership.
Therefore, it is especially important to take the driving profile of the
customers into account in order to find the cost efficient powertrain
configuration.

In today's market there are only few PHEV models available
which have entered mass production. The Toyota Prius Plug-in has
a battery capacity of 5.2 kWh which is in line with the determined
cost optimal battery size for users with medium mileages. The
battery of the Chevrolet Volt (16 kWh) and the Porsche Panamera
PHEV (9.4 kWh) are relatively large compared to the study results.
These configurations might be motivated in the target customer

Fig. 13. TCO in EURc2010/km of EREV as a function of battery size for users with different annual mileages.

Fig. 14. Variation of relevant input parameters and resulting effect on cost optimal
battery size (EREV driver B).
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groups for these models. The initial price difference for the Volt
EREV pays off only for frequent drivers due to low energy costs per
mile. However, the battery is over dimensioned even for a driver
with high annual mileage with 30,000 km/a. The Panamera is
positioned in the luxury car segment, where customers expect
high quality and performance. However, to make PHEVs and
EREVs more attractive for average customers and cost competitive
to conventional powertrain technologies in the mass market, the
battery should be dimensioned close to the TCO optimum.

It should be underlined that the presented analysis focuses on a
cost-optimal battery configuration from a customer perspective.
From an OEM's point of view there are additional aspects which
influence the battery design decision: Important boundary condi-
tions are set by the CO2 and tax legislation issued by the national
governments. The emission and fuel economy standards, that auto-
motive manufacturer are required to meet, will become more and
more restrictive over the next decade. As the electric range of a plug
in hybrid has a direct impact on the emissions level in certification
tests, OEMs might tend to install larger batteries to reduce their
corporate average fleet emissions. Furthermore, in some regions the
regulation provides super credits, if the CO2 emissions of a car are
below a certain limit. According to the latest proposal of the
Environmental Committee of EU parliament (2013) new cars with
specific emissions of less than 50 g CO2/km will be multiplied by a
factor of 2.5 in 2015 (2 in 2020) in the calculation of the OEM fleet
average. According to the ZEV-II regulation introduced by California
and other US states, the credits, which an OEM can earn by selling
EVs, is directly linked to the electric driving range of the car. Similarly
the Chinese legislation for the period past 2016 (which is still in
discussion) will probably provide multiple credits for so called new
energy vehicles with an electric range greater than 50 km. Manu-
facturers will try to meet these targets when dimensioning the
battery of a new PHEV model in the development process. Further-
more, the packaging of the car as well as weight requirements set up
fixed boundary conditions in the design of the battery storage.
So, even if a high battery capacity might be attractive from a TCO
and an emission point of view, engineers will often be forced to limit
the battery size to a certain level due to other requirements. This is
especially relevant for hybrid cars in conversion design. In newly
developed vehicle concepts in purpose design (like Tesla Model S or
BMW i3) there are more degrees of freedom to integrate the battery
in the car (e.g. in the underbody), which allows a more flexible sizing
of the battery pack.

From an environmental perspective, grid connected hybrid electric
cars have a significant GHG abatement potential depending on the
installed battery capacity. As shown in Fig. 16, the direct CO2 emissions
(TTW) of an EREV decrease from 120 g/km to 25 g/km when the
battery size is increased from 1 to 20 kWh. However, the picture is less

optimistic when indirect emissions (WTW) for the electricity genera-
tion are also taken into account. In this case the specific WTW CO2

emissions of the EREV are only in the range of 144–85 g/km. This is
still lower than the majority of current conventional cars which are
powered only by an internal combustion engine. Moreover, the
analysis in Fig. 16 assumes CO2 emission factor of 75.2 g/MJ for
electricity charged from the grid as projected for electricity mix in
Germany in 2020 by BMU (2012). If in the future, the electric energy
required to charge electric vehicle is generated merely by wind or
solar power, the WTW emissions will be significantly lower (conver-
ging towards the TTW emission line in Fig. 16).

5. Conclusions and policy implications

The paper presents a methodology how to find a cost optimal
battery setup for plug-in hybrid and range extended electric vehicles
for different user types. The analysis shows that the battery size has a
significant effect on the total cost of ownership for the customer and,
therefore, for the competitive position of the car in the market. For a
typical German driver with an annual mileage of 15,000 km, a
battery capacity of 4 kWh in case of PHEV and 6 kWh in case of
EREV seem to be suitable. However, this value strongly depends on
the driving profile of the user (e.g. for an EREV, the optimal size
changes to 2 kWh or 13 kWh if the annual mileage is halved or
doubled, respectively). Moreover, the optimal battery size is also
affected by external factors, especially electricity and fuel prices have
a significant impact. Based on these results it is recommended to
customize the battery size with respect to the driving behavior of the

Fig. 15. Cost optimal battery size over annual mileage for PHEV (left) and EREV (right); the sensitivities for higher gasoline/electricity prices are indicated by dashed lines.

Fig. 16. Average specific CO2 emissions (TTW and WTW) of an EREV as a function
of battery size (calculated for user B with 15,000 km/a) for the year 2020 in
Germany.
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user to make hybrid electric vehicle more cost competitive and
attractive for different driver types. Therefore, OEMs should develop
a modular design for their battery packs which allows adapting the
storage capacity to meet different customer requirements (instead
today's “one size fits all” product strategy). The modular design
strategy does not imply that the OEMs should offer for each
customer an individual battery size. However, a suitable strategy
could be to design (for example) three different battery sizes
dedicated to drivers with low, average and high mileage, similar to
the cars that are offered with different engine sizes. The develop-
ment of a modular design for battery packs could help OEMs to
change the sizes with less effort and few implications on the rest of
the vehicle.

The results of this paper imply that higher battery capacities
would reduce the overall WTWGHG emissions. If the political target
is to reduce the GHG emissions even further by encouraging OEMs to
design higher battery sizes for PHEVs and EREVs, the public
authorities may influence the results of TCO by different measures.
This can happen in basically two ways: On customer side financial
incentives could be provided in the form of a direct purchase bonus
or tax benefits which are linked to the battery size or the electric
driving range of the new car. Furthermore, policy makers may
increase the petrol price by increasing the taxes on it. On OEM side,
the legal CO2 regulations could contain norms that reward manu-
facturer with additional credits depending on the electric driving
range of their partial zero emission vehicles (as realized in the ZEV
legislation in California). Finally, the electricity to operate plug-in
hybrid vehicles in electric mode should be provided from renewable
energy sources, to reach their full environmental benefit.

It should be noted that this paper assumes a rational customer
who has the objective to minimize the total cost of ownership.
In reality, the behavior of consumers may not be fully rational.
Consumers may prefer higher electric range due to several
reasons. This phenomenon may be analyzed in the future and
the factors that may distort a rational choice may be identified.
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